Queen rearing : Sustainable the Meliponiculture

Introduction

- The queen bee of stingless bees are unable to find new colonies independently.
- They also do not exploit colonies of other species, as do some ants that practice dependent nest foundations.
- Consequently the colonies must multiply by swarming- the queen and a group of workers depart from the mother colony in order to find a new one.

- To date there are more than 600 farmers involved in stingless bee rearing with almost 20,000 colonies in the country.
- Demand for feral (wild) colonies of stingless bee are very high since the price of stingless bee honey catches a premium price.
- Trees being cut down unselectively which in the end resulted to the destruction of the natural ecosystems
- Therefore new and fast multiplication method for stingless bee queen rearing must be established in order to overcome some of the problems indicated before.
- One of the fast techniques is rearing of the queen via *in-vitro* technique

Important of queen rearing

- Reduce price of the colony.
- Sustainable the environment.
- Maintaining the industry.

Our focus

- Produce virgin queen
- Enhance meliponicuture with box style
- If got 5 colonies from the project also the best result.
- Mobile Meliponiculture (Mobile Pollination Services)

Our basic data

Diversity and abundance

Ovipositioning behaviour

Pollen types

Mating behaviour

Foraging behaviour

Cfahimeephoto

Stingless Bees Mapping

Abundance of stingless bee species in Peninsular Malaysia from June 2013 to June 2015

Stingless bees species

Observation colony

Total pollen collected from 8am to 3pm

Pollen

Ovipositioning process

Fastest oviposition was 4 second

Mean no. egg laid by queen per day was 45± Ovipositioning process start from 7 am and happen once every two hours

Brood cell built every 2 hours and takes 2 hours to ____complete

Trend of brood produced by *H.itama* from Jun to December

- 156 trial since 2014.
- Sacrifice about 312 layer of brood which is similar to 30 colonies.

Failed again

Failed again

Worker

The eggs not turn into larva

Larval food test

No	Larval food test	Observation
1	60 µl	The eggs transform to larva stage in 3 days and become worker in $30\pm$ days.
2	80 µl	The eggs transform to larva stage in 3 days and become worker in $45\pm$ days.
3	100 µl	The eggs transform to larva stage in 3 days. 50% of sample change into queen in $75\pm$ days.
4	120 µl	The eggs transform to larva stage in 3 days. 50% of sample change into queen in $85\pm$ days.

Healthy larval

Here the successful story

Our improvement (come the headache)

Here the queen

• The queen from the plate

Field test

6 inchi

6 inchi

Challenge

- Uneven hatching
- Humidity
- The eggs (which eggs u must choose)or it will turn into drone

The technique

- 1. Collect the larval food, store at fridge.
- 2. Prepare 96 well Elisa Plate
- 3. Harvest the young brood cell (Egg)
- 4. Insert the liquid food into ELISA well
- 5. Insert the egg vertically
- 6. Close the ELISA Plate than put in incubator.
- 7. Control the humidity and wait
- 8. Good Luck

Special thank to

fahimee

KETENGAH for funding the basic study(KG00074 10).

MARDI for funding preliminary study

MOA for mass scale (KG002910).

Farmers that I took the brood for samples