

LEMBAGA GETAH MALAYSIA

Kreatif • Inovatif • Progresif

R&D for Rubber Industry

IPiCEX 2016

2 – 4 November, 2016 Johor Bharu

MRB (Incorporation) Act 1996 (Act 551)

"Rubber industry" includes production of rubber and *hevea*wood, processing and utilisation of rubber, manufacturing of rubber products and services related thereto;

Functions (14) Functions (14) R&D (4) MRE (3) Publication (2) Training (1) Kumpulan Wang' (1) Policy (1) Enforcement (1) Advisory (1)

Upstream

Types of crop harvested

Cup lump

Midstream (Raw Rubber Processing)

Latex Concentrate

Processed Rubber

SMR

GETAH

Petroleum

(EPDM, SBR etc.)

Sectors of Natural Rubber Industry

Raw Materials

- latex
- cuplumps
- sheet rubbers
 (ribbed smoked, air dried)

- Standard Malaysian Rubber
- latex concentrate
- specialty rubbers

Rubber & Rubber-based Products

- Gloves
- Tyres
- Automotive parts

World Industry Application of NR, 2015

Tyres
Automotive
Latex
Footware
Hoses & Belts
Other GRG

5

Diversity of Rubber Products (Challenges and Opportunities for ISO/TC 45)

Contribution of Rubber Industry to National Exports

Note: ** Other Rubber: Synthetic Rubber, Reclaimed Rubber, Waste Rubber, Compound Rubber and Unvulcanised Rubber (HS Code 4002-4006)

Source: Department of Statistics, Malaysia; Malaysian Timber Industry Board (MTIB)

Share of Natural Rubber in World Rubber Consumption

R&D: Contribution and Achievement

From initial 22 trees to 500 million rubber trees?

Upstream Sector

First commercial planting in Malaya started in 1896

Latex Harvesting Technology

Midstream Sector

Downstream Sector

Dock Fenders for Ships

Buckling Fender

Flexible Traffic Guide Post

Conveyer Belts and Hoses

Footwear and Components

Current R&D&C

Zon Getah Semenanjung Malaysia

Gambarajah 1

Rubber Zone vs High Productivity

- 1. Latex harvest technology
 - a. Stimulation
 - i. Young Hevea trees -

ethephon and EBF (MORTEX)

- ii. Premium and older *Hevea* trees – ethephon, gaseous stimulation
- b. Method of latex extraction (conventional or short-cut system)
 - c. Tapping days
- 2. Clones
- 3. GAP based on precision agriculture concept, eg. stimulation, fertilizer application soil-moisture.

Breeding of New Rubber Clones

1981 & 1995 Expeditions to Amazon

Hand Pollination

Germplasm

Breeding and Production of Quality Planting Material

Bush nursery

Ground Nursery

Quality planting material

RRIM 2000 Series Clones: RRIM 2001 to RRIM 3001

Mechanisation - Production of Planting Material Approach : Fully Mechanised Nursery System (1 million capacity/year)

Activities Rubber seeds	Conventional	Mechanisation			
Quantity (Seeds)	±60 million	±30 million			
Tonnes/year	300	150			
Ratio (2WPb:seeds)	1:3	1:1.5			
Flowering season	Limited	Not limited			
Collection technique	Mixed	Fresh			
Root stocks					
Germination rate	Low (<30%)	High (>70%).			
Production of planting material – seed tray for production of					
germinated seeds and soil filling machine for filling-up soil in polybags (mechanization).					

Soil filling machine : Mechanisation **Conventional** Filling rate ie # polybags/day 2,500-3000 300-500 Wages (RM/worker/day) 40 40 # or workers (RM/day) 2 (80) 6 (240) # of working days/month 24 24 ∑ RM/Month 5760 1920 Polybag cost (RM/polybag) 0.004 0.10

Mechanisation – Field Mechanisation : Fertilizer Application

Objective : to increase efficiency by increasing land:man ratio and reducing quantity of fertilizer applied

gm/tree/year : 1000 gm (1 kg/tree/year) @ 350 tappable trees/ha 350 kg @ 25 kg/bag \rightarrow 14 bags of 25 kg/bag If 2 workers @ 7 bags/worker @ RM7.00/bag = RM49/ha/worker ($\sum RM98/ha$)

Fertilizer machine - `pocketing system'

 Land:man ratio (± 20 sec/hole, 180 trees/hr, 1260 trees/7 hr, 3.6ha/machine with 2 operators @ 500 gm/tree

Main Focus

- 1. New economic model for smallholders
- 2. Increasing latex production
- 3. Rubberised road based on cuplumps
- 4. Integration of agricultural activities in rubber ecosystem
- 5. Green tyres

New Economic Model for Smallholders: Empowering smallholders into supply chain in the rubber industry

Concept

- 1. Vertical integration
- 2. Clustering of rubber smallholdings
- 3. Rubber processing centre (PMG) as vendor rubber processing factory

Instrument

- Cooperative (cluster concept e.g. 200 smallholdings ± 600 ha/cluster)
- Rubber processing Centre (PMG) @ 10 tonnes cuplumps/day to produce 7 tonnes crepe rubber (70% DRC)
- 3. Rubber processing factory e.g. SMR' @ 100 tonnes/day, clusters 14 PMG @ 7 tonnes/day

VERTICAL INTEGRATION APPROACH

Upstream Supply of raw materials Latex or cuplump Midstream Rubber processing SMR, Latex concentrate

Vertical integration – a combination of upstream (rubber plantation) and midstream sectors (rubber processing).

Land development, planting and field maintenance : USD 4,000/ha/5 year and USD 200/ha/year from 6th to year 25th year (field maintenance)

SMR plant – 30 tonnes/day to 200 tonnes/day which require between 3,000 ha to 6,700 ha @ 30/kg (fresh cup lump)/ha/tapping.

Natural Rubber Serum Products with Commercial Applications from Bioprocessing Technology

Natural rubber serum (60-70%)

- Clear liquid byproduct (solid content = 3-5%)
- Disposed of as effluent
- Main source of pollutant from raw rubber processing

Latex concentrate

Protein Powder

Natural rubber serum (60-70%)

- Liquid Protein solution (20%)
- Protein powder
- Additional income to s/holders

Quebrachitol

- Sugar fraction
- Applications
 - ✓ Alternative source of carbohydrate
 - ✓ Antibiotics and Enzyme Inhibitors
 - ✓ Inositol derivatives

Serum Protein

- Applications
 - Industrial proteins and enzymes
 - Culture growth media
 - Food additives
 - Animal feed supplements

INCREASING LATEX PRODUCTION

Latex Production in Malaysia

Involvement of Smallholder in Rubber Processing

Rubberised Road based on Cuplumps

Rubberised Road based on Cuplumps

What is rubberised-bitumen? A mixture of rubber (crumb or latex concentrate) and bitumen mixed at elevated temperature for a duration of time

INTEGRATION OF CASH CROPS/LIVESTOCK/AQUACULTURE IN RUBBER ECO-SYSTEM

INTEGRATION OF CASH CROPS/LIVESTOCK/AQUACULTURE IN RUBBER ECO-SYSTEM Optimization of Land Use

- 1. Cash crop (vegetables, cereals, banana, pineapple)
- 2. Perennial trees (fruit trees, OP)
- 3. Livestock (chicken, goat, cattle)
- 4. Pasture eg napier grass (grazing or feedlot)
- 5. Aquaculture
- 6. Herbs (Tongkat Ali)
- 7. Moringa

INTEGRATION OF CASH CROPS/LIVESTOCK/AQUACULTURE IN RUBBER ECO-SYSTEM

WAY FORWARD FOR RETREADS INDUSTRY

Research and Innovation Environmentally friendly technology

Specialty Natural Rubbers Policy & Regulations

COMMERCIALIZATION

Industrial Rubber Goods (IRG)

• Seismic Bearings

LNG tanks in China

World largest single base Isolated project in Iran First base isolated building in Algeria

Indonesia

San Bernadino USA

- Seismic rubber bearings
- Rubber for offshore applications
- Base isolation bridge bearings

Penang Bridge fitted with 9000 pcs of bridge bearing

110-year old viaduct bridge in Melbourne Australia - still heavily trafficked structure

- Seismic Bearings
- Rubber for Offshore

Oil & Gas Offshore Production Application (Sarawak Shell -1995 - 1996)

Oil & Gas Offshore Production Application (Carigali Triton Project -2000-2001)

Oil & Gas Offshore Production Application (Nippon Oil Exploration Project 2002-2003)

- Seismic bearings
- Rubber for offshore
- Base isolation bridge bearing
- Rubber for railways

Lateral suspension for KL Monorail

- Seismic Bearings
- Rubber for Offshore
- Rubber for Railways
- Vibrohammers Isolators for Construction Industries

RUBBERISED BITUMEN

Green Rubber Sound Insulator

CHALLENGES

Challenges?

Challenges?

Critical : R&D → Clients

R&D

- Improvement of technology
- Technical support

CHALLENGES IN RELATION TO UPTAKE OF UPSTREAM TECHNOLOGIES

• YPH and rubber production < potential

Target 2020	: 1800 kg/	′ha,	/year
		-	_

2015 : 1490 kg/ha/year

- Labour shortage?
- Poor adoption of technologies conventional system with high requirement of tappers is better than LITS concept? Less tapper, less rubber production?
- Transfer of technology (TOT)
- Inefficient field management
- Reduction in rubber planted areas
- Competition from low cost rubber producing countries

LABOUR SHORTAGE

Impact of Tapping Frequency on the

Economic Life of Rubber Tree

	cm/month	cm/yr	yr/panel	∑ yr
d/2	2.5 (100%)	30.0	4.7	9.3
d/3	2.3 (90%)	27.6	5.0	10.0
d/4	2.0 (80%)	24.0	5,8	11.7
d/6	1.8 (70%)	21.6	6.5	13.0
	d/2 d/3 d/4 d/6	cm/month d/2 2.5 (100%) d/3 2.3 (90%) d/4 2.0 (80%) d/6 1.8 (70%)	cm/month cm/yr d/2 2.5 (100%) 30.0 d/3 2.3 (90%) 27.6 d/4 2.0 (80%) 24.0 d/6 1.8 (70%) 21.6	cm/month cm/yr yr/panel d/2 2.5 (100%) 30.0 4.7 d/3 2.3 (90%) 27.6 5.0 d/4 2.0 (80%) 24.0 5,8 d/6 1.8 (70%) 21.6 6.5

Impact of Tapping Frequency on Requirement of Tappers

		# of task	Ha/tapper	# of tapper/ 100 ha
1.43 ha/task	d/2	2	2.86	35 (100%)
350 trees/ha	d/3	3	4.29	23 (66%)
500 trees/task	d/4	4	5.72	17 (48%)
	d/6	6	8.58 🧹	12 (34%) 🐸

LATEX EXTRACTION METHODS in the 19th CENTURY

Survey in 2010/2011

CHALLENGES: 4% using latex stimulant (Survey 2010/2014)

67.25 tonnes MORTEX 67,250,000 gm

4x/yr 16,750,000 trees 6x/yr 11,166,666 trees

@350 trees (TSPH) 4x/yr 47,857 ha 6x/yr 31,904 ha

M'sia 18k to 27k ha (2.5% to 3.8%)

Bark renewal TPD

Geovernment of Bark Moisture content in bark Productivity DRC

Sucrose in latex

Issues & Challenges in Rubber Downstream Sector

- Decreasing competitiveness of SMR
- Lack of new rubbers and value-additions in raw rubber processing
- Continued dominance & dependence on latex-based products
- Competition under liberalized trade
- Non-trade barriers
- Growing imports -1999 (RM1b) 2006 (RM 2.3b)
- Inadequate local raw material supply latex & rubber wood
- Dependence on foreign labour
- Need more indigenous trained technical manpower in process and product development

R&D – Next Step?

Way forward 2020 (Export value)

STRATEGIES TO INCREASE PRODUCTION

- Increase replanting area to 40,000 hectare per year
- To expand rubber area (Sabah and Sarawak)
- Accelerate replanting to high yielding clones – Clone 1Malaysia (RRIM 3001)
- Promote mechanization and automation
- Enhance adoption in the appropriate technology in latex harvesting

LITS

Clone RRIM3001

MRB Supports for all Stages of Rubber Processing and Product Manufacturing

Emerging Fields and Opportunities in Rubber Downstream Sector

- a. New rubber materials particularly for tyre applications
- b. Advanced/engineering materials and biomaterials in rubber
- c. Green rubber & rubber products
- d. Applications of rubbers in infrastructure, transport, military and automotive
- e. Environmentally-friendly and sustainable rubber industry
- f. Alternative sources of energy
- g. Broadening product base and strengthening edge in latex product with a focus on health and environment
- h. Developing Malaysia as the premier rubber product testing and certification centre for ASEAN
- i. Meeting challenges of globalization and liberalized trade

Integrated Environmentally-Friendly Rubber Processing Complex (IPC)

Latex Processing Centre

Purpose : LC (30 tonnes/day of field latex) 2016 – installation of equipment, test and commissioning

Specialty Rubber Processing Centre (SRF)

APPLICATION OF GREEN RETREADS IN PUBLIC TRANSPORT

1 COLLABORATION RESEARCH ACTIVITIES

2 FUNDAMENTAL RESEARCH

Cuplumps Modified Bitumen (CMB) Activities for CMB road pavement

Technical and Industrial Support Services

Enhancing testing and support services to rubber industry by establishing Global Testing and Consultancy for Rubber (G-TAC_R)

One Stop Centre for Rubber Testing and Consultancy

MRB Centers of Research

- 1. Colloids and Interface Science
- 2. Advanced Materials and Analytical Chemistry
- 3. Advanced Processing and Product Technology
- 4. Engineering Design and Prototype
- 5. Advanced Imaging
- 6. Wood Science and Technology
- 7. Advanced Physiology and Agronomy
- 8. Tissue Culture
- 9. Genomics and Bioinformatics

Proposed COE Complex

10.Global Testing and Consultancy for Rubber (G-TAC_R)

Summary

- Home-grown Technology
 - Significant contribution to export revenue
 - High per unit area contribution
 - Spin-off and multiplier effect of rubber industry
- Strategic Crop
 - Supports downstream sector
 - Supports smallholders families
 - Helps eradicate poverty
- Increasing domestic rubber consumption (ITRC)
- R&D vs Government procurement Transportation sector : Green rubber for tyre + NR for road construction? Other sectors: Engineering/Infra sector; Military/defence; Household; Sports sector

